Alternating current and direct current
The sinusoidal curve that represents the positive and negative phases of AC current. |
Contents |
[edit] Introduction
An electric current is a flow of charge along a conductor, such as a copper wire. When it flows in one direction it is called direct current (DC). When it reverses direction periodically it is termed an alternating current (AC).
AC current is generally used to power homes and businesses, and is also present when audio and radio signals are carried on electrical wires. DC current is typical of batteries that power flashlights and other home appliances and is also used in some industrial applications.
Because AC current reverses direction periodically, it can be characterised by a sinusoidal waveform where the half periods above the x-axis represent the positive phase of the current and the half periods below the x-axis represent the negative phase.
AC current operates in the following way: it will start from a position of zero, build up to its maximum value (top of the positive peak on the sinusoidal curve), reverse to zero, continue to the maximum in the opposite direction (negative, below the x-axis) then reverse back to zero, upon which the cycle begins again. The number of these cycles performed per second is called the frequency and is measured in hertz (Hz).
Domestic and commercial power in the UK and other countries is typically of low frequency (50-60Hz). Far higher frequencies are encountered in other applications such as television (100,000,000 cycles/second (100 megahertz (or 100MHz) where 1MHz is one million cycles/second)). Even higher frequencies of several thousand megahertz are used in microwave and radar applications, while in mobile phones they may be in the order of around 1,000MHz (one thousand million hertz or 1 gigahertz (GHz).
Many electronic devices contain semi-conductors which require low-voltage DC. This means that such devices must convert high voltage AC to low voltage DC. This is usually achieved by the plug-in power plug that is supplied with the device.
[edit] Some advantages of AC over DC
AC current offers numerous benefits over DC. Typically, these include:
- AC can be relatively easily and economically stepped up or down with a transformer to suit the application. DC cannot be wired through a transformer.
- Because it can be stepped up (and down), AC can be increased to high voltage levels for transmission over large distances, then stepped down to safer levels for consumer use.
- High voltages can be generated in AC. This is more difficult with DC.
- Because of the high voltages that can be generated, AC can be transmitted over long distances.
- Long-range transmission results in relatively low energy losses resulting from resistance.
- AC is cheaper to generate than DC.
- AC can be easily converted to DC if required.
[edit] DC networks
The Energy Saving Trust estimated in 2007 that by 2020, 45% of the electricity consumption in a household would be entertainment, computers and gadgets and LED lighting, all of which are DC-powered. This, in combination with the emergance of DC generation from solar panels, and battery storage, have given rise to the concept of DC (rather than AC) networks.
For more information see: DC electricity networks.
[edit] Related articles on Designing Buildings Wiki
- DC electricity networks.
- Electricity supply.
- Energy consumption.
- Energy storage.
- Fossil fuel.
- Hydroelectricity.
- Micro-grids.
- Microgeneration.
- Oil - a global perspective.
- Power.
- PV inverter.
- Renewable energy.
- Single-phase v three-phase ac current systems.
- Solar photovoltaics.
- The future of UK power generation.
- Types of fuel.
- Watt.
Featured articles and news
Local leaders gain new powers to support local high streets
High Street Rental Auctions to be introduced from December.
Infrastructure sector posts second gain for October
With a boost for housebuilder and commercial developer contract awards.
Sustainable construction design teams survey
Shaping the Future of Sustainable Design: Your Voice Matters.
COP29; impacts of construction and updates
Amid criticism, open letters and calls for reform.
The properties of conservation rooflights
Things to consider when choosing the right product.
Adapting to meet changing needs.
London Build: A festival of construction
Co-located with the London Build Fire & Security Expo.
Tasked with locating groups of 10,000 homes with opportunity.
Delivering radical reform in the UK energy market
What are the benefits, barriers and underlying principles.
Information Management Initiative IMI
Building sector-transforming capabilities in emerging technologies.
Recent study of UK households reveals chilling home truths
Poor insulation, EPC knowledge and lack of understanding as to what retrofit might offer.
Embodied Carbon in the Built Environment
Overview, regulations, detail calculations and much more.
Why the construction sector must embrace workplace mental health support
Let’s talk; more importantly now, than ever.
Ensuring the trustworthiness of AI systems
A key growth area, including impacts for construction.
Foundations for the Future: A new model for social housing
To create a social housing pipeline, that reduces the need for continuous government funding.
Mutual Investment Models or MIMs
PPP or PFI, enhanced for public interest by the Welsh Government.
Key points and relevance to construction of meeting, due to reconvene.